Soal Dan Pembahasan
Selamat datang bagi teman - teman di Materi Matematika, Pada kesempatan kali ini kami akan berbagi dengan teman teman di manapun kalian berada, tentang materi pelajaran matematika yang kami beri judul Soal Dan Pembahasan, Semoga pembahasan yang kami tulis ini dapat menjadi acuan kalian semua dalam belajar Matematika .
Hubungan antar garis limit fungsi bunga pertumbuhan dan peluruhan bilangan bulat berpangkat barisan deret bangun datar ruang sisi lengkung bola cos kombinasi contoh soal yang cocok untuk pendekatan scientific open ended tes cerdas cermat statistika counting sin tan cacah model pembelajaran jigsaw pbl cerita tentang cosinus sbmptn dimensi tiga. Namun yang akan kita bahas pada kesempatan kali ini adalah Soal Dan Pembahasan
Soal No. 1
Dua buah matriks A dan B masing-masing berturut-turut
Tentukan A − B
Jika A = B, maka a + b + c =....
A. − 7
B. − 5
C. − 1
D. 5
E. 7
(UN Matematika Tahun 2010 P37 Matriks)
Pembahasan
Kesamaan dua matriks:
4a = 12
a = 3
3a = − 3b
3(3) = − 3b
9 = − 3b
b = − 3
3c = b
3c = − 3
c = − 1
a + b + c = 3 + (− 3) + (− 1) = 3− 3 − 1 = − 1
Soal No. 14
memenuhi AX = B, tentukan matriks X
Pembahasan
Jika AX = B, maka untuk mencari X adalah
X = A−1 B
Cari invers matriks A terlebih dahulu, setelah ketemu kalikan dengan matriks B
Hubungan antar garis limit fungsi bunga pertumbuhan dan peluruhan bilangan bulat berpangkat barisan deret bangun datar ruang sisi lengkung bola cos kombinasi contoh soal yang cocok untuk pendekatan scientific open ended tes cerdas cermat statistika counting sin tan cacah model pembelajaran jigsaw pbl cerita tentang cosinus sbmptn dimensi tiga. Namun yang akan kita bahas pada kesempatan kali ini adalah Soal Dan Pembahasan
Soal Dan Pembahasan
Soal Dan Pembahasan Matriks Kls XII IPA
\Soal No. 1
Dua buah matriks A dan B masing-masing berturut-turut
Tentukan A − B
Pembahasan
Operasi pengurangan matriks:
Soal No. 2
Dari dua buah matriks yang diberikan di bawah ini,
Tentukan 2A + B
Pembahasan
Mengalikan matriks dengan sebuah bilangan kemudian dilanjutkan dengan penjumlahan:
Soal No. 3
Matriks P dan matriks Q sebagai berikut
Tentukan matriks PQ
Pembahasan
Perkalian dua buah matriks
Soal No. 4
Tentukan nilai a + b + x + y dari matriks-matriks berikut ini
Diketahui bahwa P = Q
Operasi pengurangan matriks:
Soal No. 2
Dari dua buah matriks yang diberikan di bawah ini,
Tentukan 2A + B
Pembahasan
Mengalikan matriks dengan sebuah bilangan kemudian dilanjutkan dengan penjumlahan:
Soal No. 3
Matriks P dan matriks Q sebagai berikut
Tentukan matriks PQ
Pembahasan
Perkalian dua buah matriks
Soal No. 4
Tentukan nilai a + b + x + y dari matriks-matriks berikut ini
Diketahui bahwa P = Q
Pembahasan
Kesamaan dua buah matriks, terlihat bahwa
3a = 9 → a = 3
2b = 10 → b = 5
2x = 12 → x = 6
y = 6
Sehingga:
a + b + x + y = 3 + 5 + 6 + 2 = 16
Soal No. 5
Tentukan determinan dari matriks A berikut ini
Pembahasan
Menentukan determinan matriks ordo 2 x 2
det A = |A| = ad − bc = (5)(2) − (1)(−3) = 10 + 3 = 13
Soal No. 6
Diberikan sebuah matriks
Tentukan invers dari matriks P
Pembahasan
Invers matriks 2 x 2
Soal No. 7
Tentukan tranpose dari matriks A berikut ini
Pembahasan
Transpose sebuah matriks diperoleh dengan mengubah posisi baris menjadi kolom seperti contoh berikut:
Soal No. 8
Kesamaan dua buah matriks, terlihat bahwa
3a = 9 → a = 3
2b = 10 → b = 5
2x = 12 → x = 6
y = 6
Sehingga:
a + b + x + y = 3 + 5 + 6 + 2 = 16
Soal No. 5
Tentukan determinan dari matriks A berikut ini
Pembahasan
Menentukan determinan matriks ordo 2 x 2
det A = |A| = ad − bc = (5)(2) − (1)(−3) = 10 + 3 = 13
Soal No. 6
Diberikan sebuah matriks
Tentukan invers dari matriks P
Pembahasan
Invers matriks 2 x 2
Soal No. 7
Tentukan tranpose dari matriks A berikut ini
Pembahasan
Transpose sebuah matriks diperoleh dengan mengubah posisi baris menjadi kolom seperti contoh berikut:
Soal No. 8
Diketahui persamaan matriks |
Nilai a + b + c + d =....
A. − 7
B. − 5
C. 1
D. 3
E. 7
Pembahasan
Jumlahkan dua matriks pada ruas kiri, sementara kalikan dua matriks pada ruas kanan, terakhir gunakan kesamaan antara dua buah matriks untuk mendapatkan nilai yang diminta.
2 + a = −3
a = − 5
4 + b = 1
b = − 3
d − 1 = 4
d = 5
c − 3 = 3
c = 6
Sehingga
A. − 7
B. − 5
C. 1
D. 3
E. 7
Pembahasan
Jumlahkan dua matriks pada ruas kiri, sementara kalikan dua matriks pada ruas kanan, terakhir gunakan kesamaan antara dua buah matriks untuk mendapatkan nilai yang diminta.
2 + a = −3
a = − 5
4 + b = 1
b = − 3
d − 1 = 4
d = 5
c − 3 = 3
c = 6
Sehingga
a + b + c + d = −5 − 3 + 6 + 5 = 3
Soal No. 9
Diketahui matriks
Apabila A − B = Ct = transpos matriks C, maka nilai x .y =....
A. 10
B. 15
C. 20
D. 25
E. 30
(UN 2007)
Pembahasan
Transpos C diperoleh dengan mengubah posisi baris ke kolom, B − A adalah pengurangan matriks B oleh A
Akhirnya, dari kesamaan dua matriks:
y − 4 = 1
y = 5
x + y − 2 = 7
x + 5 − 2 = 7
x + 3 = 7
x = 4
x . y = (4)(5) = 20
Soal No. 10
Soal No. 9
Diketahui matriks
Apabila A − B = Ct = transpos matriks C, maka nilai x .y =....
A. 10
B. 15
C. 20
D. 25
E. 30
(UN 2007)
Pembahasan
Transpos C diperoleh dengan mengubah posisi baris ke kolom, B − A adalah pengurangan matriks B oleh A
Akhirnya, dari kesamaan dua matriks:
y − 4 = 1
y = 5
x + y − 2 = 7
x + 5 − 2 = 7
x + 3 = 7
x = 4
x . y = (4)(5) = 20
Soal No. 10
Jika |
maka x + y =....
A. − 15/4
B. − 9/4
C. 9/4
D. 15/4
E. 21/4
(Soal UMPTN Tahun 2000)
Pembahasan
Masih tentang kesamaan dua buah matriks ditambah tentang materi bentuk pangkat, mulai dari persamaan yang lebih mudah dulu:
3x − 2 = 7
3x = 7 + 2
3x = 9
x = 3
4x + 2y = 8
22(x + 2y) = 23
22x + 4y = 23
2x + 4y = 3
2(3) + 4y = 3
4y = 3 − 6
4y = − 3
y = − 3/4
Sehingga:
x + y = 3 + (− 3/4) = 2 1/4 = 9/4
Soal No. 11
Invers dari matriks A adalah A−1.
A. − 15/4
B. − 9/4
C. 9/4
D. 15/4
E. 21/4
(Soal UMPTN Tahun 2000)
Pembahasan
Masih tentang kesamaan dua buah matriks ditambah tentang materi bentuk pangkat, mulai dari persamaan yang lebih mudah dulu:
3x − 2 = 7
3x = 7 + 2
3x = 9
x = 3
4x + 2y = 8
22(x + 2y) = 23
22x + 4y = 23
2x + 4y = 3
2(3) + 4y = 3
4y = 3 − 6
4y = − 3
y = − 3/4
Sehingga:
x + y = 3 + (− 3/4) = 2 1/4 = 9/4
Soal No. 11
Invers dari matriks A adalah A−1.
Jika |
tentukan matriks (A−1)T
Pembahasan
Invers matriks dan tranpos sebuah matriks.
Invers matriks dan tranpos sebuah matriks.
Misalkan:
Sehingga:
Soal No. 12
Sehingga:
Soal No. 12
Tentukan nilai x agar matrik |
merupakan sebuah matriks yang tidak memiliki invers!
Pembahasan
Matriks yang tidak memiliki invers, disebut matriks singular. Determinan dari matriks singular sama dengan nol.
det P = ad − bc = 0
(2)(x) − (3)(5) = 0
2x − 15 = 0
2x = 15
x = 15/2
Soal No. 13
Pembahasan
Matriks yang tidak memiliki invers, disebut matriks singular. Determinan dari matriks singular sama dengan nol.
det P = ad − bc = 0
(2)(x) − (3)(5) = 0
2x − 15 = 0
2x = 15
x = 15/2
Soal No. 13
Diketahui matriks | , | dan |
Jika A = B, maka a + b + c =....
A. − 7
B. − 5
C. − 1
D. 5
E. 7
(UN Matematika Tahun 2010 P37 Matriks)
Pembahasan
Kesamaan dua matriks:
4a = 12
a = 3
3a = − 3b
3(3) = − 3b
9 = − 3b
b = − 3
3c = b
3c = − 3
c = − 1
a + b + c = 3 + (− 3) + (− 1) = 3− 3 − 1 = − 1
Soal No. 14
Diketahui matriks |
memenuhi AX = B, tentukan matriks X
Pembahasan
Jika AX = B, maka untuk mencari X adalah
X = A−1 B
Cari invers matriks A terlebih dahulu, setelah ketemu kalikan dengan matriks B
Catatan:
AX = B maka X = A−1 B XA = B maka X = B A−1 |