Showing posts with label Kelas 4. Show all posts
Showing posts with label Kelas 4. Show all posts
Matematika Rumus Bangun Ruang dan Bangun Datar

Matematika Rumus Bangun Ruang dan Bangun Datar

RUMUS-RUMUS BANGUN RUANG DAN BANGUN DATAR


   A.    RUMUS BANGUN RUANG
SD N 2 Tlogomulyo
    a.     Kubus

 Rumus:
·         Luas permukaan: 6 x s2 =6s2
·         Volume: s x s x s= s3


    b.     Balok

Rumus:
·         Luas permukaan: 2{(p x l)+(p x t)+(l x t)}
·         Volume: p x l x t

    c.      Limas

Rumus:
·         Luas permukaan: La + jumlah luas segitiga pada bidang tegak
·         Volume : 1/3 x La x t
La=luas alas
t= tinggi

    d.     Prisma

Rumus:
·         Luas permukaan : (2 x La)+(K x t)
·         Volume: La x t
La= luas alas
K= keliling alas
t= tinggi


   e.     Tabung
Rumus:
·         Luas permukaan: 2 π r (r+t)
·         Luas selimut: 2 π r t
·         Volume : π r2 t
π= 22/7 atu 3,14
r= jari-jari alas
t= tinggi tabung


   f.       Kerucut

Rumus:
·         Luas permukaan: π r (r+s)
·         Luas selimut: π r s
·         Volume: 1/3 π r2 t
r= jari-jari lingkaran alas
s= panjang garis pelukis kerucut
t= tinggi kerucut


   g.     Bola

Rumus :
·         Luas permukaan: 4 π r2
·         Volume: 4/3 π r3
r= jari-jari bola
B. Macam Macam Rumus Bangun Datar dan Sifatnya
    
Bangun Datar terdiri dari segitiga, persegi, persegi panjang, jajaran genjang, belah ketupat, layang layang, trapesi
Berikut saya akan berbagi info tentang bangun datar berdasarkan definisi bangun datar, sifat sifat bangun datar, rumus keliling dan rumus luas


SEGITIGA
Definisi:
Segitiga adalah bangun geometri yang dibuat dari tiga sisi yang berupa garis lurus dan tiga sudut.
Sifat-Sifat:
Jumlah sudut pada segitiga besarnya 180⁰.
Jenis-jenis segitiga :
1) Segitiga Sama Sisi
a. mempunyai 3 simetri lipat.
b. mempunyai 3 simetri putar.
c. mempunyai 3 sisi sama panjang.
d. mempunyai 3 sudut sama besar yaitu 60⁰.
2) Segitiga Sama Kaki
a. mempunyai 1 simetri lipat.
b. mempunyai 1 simetri putar.
c. mempunyai 2 sisi yang berhadapan sama panjang.
3) Segitiga Siku-Siku
a. tidak mempunyai simetri lipat dan simetri putar.
b. mempunyai 2 sisi yang saling tegak lurus.
c. mempunyai 1 sisi miring.
d. salah satu sudutnya adalah sudut siku-siku yaitu 90⁰.
e. untuk mencari panjang sisi miring digunakan rumus phytagoras :

PERSEGI
Definisi:
Persegi adalah bangun datar dua dimensi yang dibentuk oleh empat buah rusuk yang sama panjang dan memiliki empat buah sudut siku-siku.
Sifat:
Mempunyai 4 titik sudut.
Mempunyai 4 sudut siku-siku 90⁰.
Mempunyai 2 diagonal yang sama panjang.
Mempunyai 4 simetri lipat.
Mempunyai 4 simetri putar.


PERSEGI PANJANG
Definisi:
Persegi panjang adalah bangun datar dua dimensi yang dibentuk oleh dua pasang rusuk yang masing-masing sama panjang dan sejajar dengan pasangannya, dan memiliki empat buah sudut siku-siku.
Sifat Sifat:
Sisi yang berhadapan sama panjang dan sejajar.
Sisi-sisi persegi panjang saling tegak lurus
Mempunyai 4 sudut siku-siku 90⁰.
Mempunyai 2 diagonal yang sama panjang
Mempunyai 2 simetri lipat.
Mempunyai 2 simetri putar


JAJARAN GENJANG
Definisi:
Jajaran Genjang adalah bangun datar dua dimensi yang dibentuk oleh dua pasang rusuk yang masing-masing sama panjang dan sejajar dengan pasangannya, dan memiliki dua pasang sudut bukan siku-siku yang masing-masing sama besar dengan sudut di hadapannya.
Sifat-Sifat:
Tidak mempunyai simetri lipat dan simetri putar.
Sisi yang berhadapan sejajar dan sama panjang.
Dua sisi lainnya tidak saling tegak lurus.
Mempunyai 4 sudut, 2 sudut berpasangan dan berhadapan.
Sudut yang saling berdekatan besarnya 180⁰.
Mempunyai 2 diagonal yang tidak sama panjang.


BELAH KETUPAT
Definisi:
Belah ketupat adalah bangun datar dua dimensi yang dibentuk oleh empat rusuk yang sama panjang dan dan memiliki dua pasang sudut bukan siku-siku yang masing-masing sama besar dengan sudut di hadapannya.
Sifat- Sifat:
Mempunyai 2 simetri lipat.
Mempunyai 2 simeteri putar.
Mempunyai 4 titik sudut.
Sudut yang berhadapan besarnya sama.
Sisinya tidak tegak lurus.
Mempunyai 2 diagonal yang berbeda panjangnya.


LAYANG-LAYANG
Definisi:
Layang-layang adalah bangun geometri berbentuk segiempat yang terbentuk dari dua segitiga sama kaki yang alasnya berhimpitan.
Sifat-Sifat:
Mempunyai 1 simetri lipat. Tidak mempunyai simetri putar
Mempunyai 4 sisi sepasang-sepasang yang sama panjang.
Mempunyai 4 buah sudut.
Sepasang sudut yang berhadapan sama besar.
Mempunyai 2 diagonal berbeda dan tegak lurus.


TRAPESIUM
Definisi:
Trapesium adalah bangun segiempat dengan sepasang sisi berhadapan sejajar.
Sifat-Sifat:
Tiap pasang sudut yang sisinya sejajar adalah 180⁰.
Jenis-jenis trapesium:
a. Trapesium Sembarang
mempunyai sisi-sisi yang berbeda.
b. Trapesium Siku-SIku
mempunyai sudut siku-siku.
c. Trapesium Sama Kaki
mempunyai sepasang kaki sama panjang


LINGKARAN
Definisi:
Lingkaran merupakan kurva tertutup sederhana beraturan.
Sifat-Sifat
Jumlah derajat lingkaran sebesar 360⁰.
Lingkaran mempunyai 1 titik pusat.
Mempunyai simetri lipat dan simetri putar yang jumlahnya tidak terhingga.
Istilah-istilah dalam lingkaran :
a. Diameter lingkaran (d) yaitu ruas garis yang menghubungkan dua titik pada busur lingkaran melalui titik pusat lingkaran.
b. Jari-jari lingkaran (r) yaitu ruas garis yang menghubungkan titik pada busur lingkaran dengan titik pusat lingkaran.
c. Tali busur yaitu garis yang menghubungkan dua titik pada busur lingkaran dan tidak melewati titik pusat lingkaran.
d. Busur yaitu bagian lingkaran yang dibagi oleh tali busur.
e. Juring yaitu daerah pada lingkaran yang dibatasi oleh 2 jari-jari maupun busur lingkaran.
f. Susut pusat yaitu sudut yang dibentuk oleh 2 buah jari-jari.
Rangkuman Materi Operasi Penjumlahan dan Pengurangan Bilangan Pecahan Matematika Kelas 4 SD Lengkap

Rangkuman Materi Operasi Penjumlahan dan Pengurangan Bilangan Pecahan Matematika Kelas 4 SD Lengkap

Penjumlahan dan Pengurangan Bilangan Pecahan - Artikel kali ini, admin akan menjelaskan maeri tentang penjumlahan dan pengurangan bilangan pecahan. Materi ini merupakan salah satu materi pelajaran matematika kelas 4 SD. Di dalam bilangan pecahan, penyebutnya ada yang sama dan ada yang memiliki penyebut yang berbeda. Materi ini akan membahas kedua operasi bilangan pecahan tersebut yaitu penjumlahan pecahan (baik penjumlahan pecahan biasa maupun penjumlahan pecahan campuran) dan pengurangan pecahan (baik pengurangan pecahan biasa maupun pengurangan pecahan campuran). Untuk lebih memahami, perhatikan baik - baik penjelasan berikut ini.

Operasi Penjumlahan dan Pengurangan Bilangan Pecahan Matematika Kelas 4 SD

Operasi Penjumlahan dan Pengurangan Bilangan Pecahan Dilengkapi Pembahasan Contoh Soal

Penjumlahan Bilangan Pecahan

Penjumlahan bilangan pecahan biasa
Dalam menjumlahkan pecahan biasa yang memiliki penyebut yang sama, kalian cukup menjumlahkan angka yang ada di bagian atas atau biasa dinamakan sebagai "pembilang" sementara penyebutnya tetap.
Contoh :
Penjumlahan bilangan pecahan biasa

Sedangkan untuk menjumlahkan pecahan yang memiliki penyebut yang berbeda, maka kalian harus mengubah atau menyamakan penyebutnya terlebih dahulu, yaitu dengan cara mencari KPK dari penyebutnya.
Contoh :
Penjumlahan Bilangan Pecahan
KPK dari 5 dan 7 adalah 35, sehingga :

Penjumlahan Bilangan Pecahan

Sifat - sifat penjumlahan pada bilangan pecahan sama dengan sifat - sifat penjumlahan pada bilangan bulat, yaitu :
(a + b = b + a), (a + 0 = a) dan {(a + b ) + c = a + (b + c)}

Penjumlahan bilangan pecahan campuran
Pecahan campuran merupakan perpaduan antara bilangan asli dan bilangan campuran. Dalam melakukan penjumlahan bilangan pecahan campuran, hal yang harus dilakukan adalah menjumlahkan bagian bilangan bulat dan bagian bilangan pecahan secara terpisah dan menyamakan penyebut dengan cara mencari KPK dari penyebutnya.

Contoh :
Penjumlahan Bilangan Pecahan

Penjumlahan Bilangan Pecahan (Jumlahkan bilangan bulat dengan bilangan bulat dan samakan
                                                            penyebut dengan mencari KPK dari 3 dan 7)
                     (Jumlahkan bilangan pecahan dengan bilangan pecahan)
                    

Pengurangan Bilangan Pecahan

Pengurangan bilangan pecahan biasa
Konsep pengurangan pada bilangan pecahan biasa sama saja seperti pada penjumlahan. Jika penyebutnya sama tinggal mengurangkan angka yang ada di atasnya atau "pembilang".

Contoh :
Pengurangan Bilangan Pecahan
Secara umum dapat dituliskan :
Pengurangan Bilangan Pecahan

Untuk bilangan pecahan yang penyebutnya berbeda juga sama, terlebih dahulu harus disamakan penyebutnya dengan cara mencari KPK dari kedua bilangan penyebut.
Contoh :
Pengurangan Bilangan Pecahan
KPK dari 6 dan 5 adalah 30, sehingga :
Pengurangan Bilangan Pecahan

Pengurangan bilangan pecahan campuran
Dalam pengurangan bilangan pecahan campuran, caranya sama saja dengan penjumlahan pecahan campuran yaitu mengurangkan bagian bilangan bulat dan bagian bilangan pecahannya secara terpisah dan menyamakan penyebut dengan cara mencari KPK dari penyebutnya.

Contoh :
Pengurangan bilangan pecahan campuran

                    Pengurangan bilangan pecahan campuran

                   Pengurangan bilangan pecahan campuran
Itulah penjelasan materi mengenai Operasi Penjumlahan dan Pengurangan Bilangan Pecahan, semoga kalian bisa memahami penjelasan dan pembahasan contoh soal di atas sehingga bisa membantu kalian dalam menyelesaikan soal - soal tentang bilangan pecahan dengan mudah.