Pembahasan Materi Matematika Persamaan dan Pertidaksamaan Logaritma

Selamat datang bagi teman - teman di Materi Matematika, Pada kesempatan kali ini kami akan berbagi dengan teman teman di manapun kalian berada, tentang materi pelajaran matematika yang kami beri judul Pembahasan Materi Matematika Persamaan dan Pertidaksamaan Logaritma, Semoga pembahasan yang kami tulis ini dapat menjadi acuan kalian semua dalam belajar Matematika . Berikut Ini Pembahasan Materi Matematika Persamaan dan Pertidaksamaan Logaritma Selengkapnya

lihat juga


Pembahasan Materi Matematika Persamaan dan Pertidaksamaan Logaritma

Pembahasan Materi Matematika Persamaan dan Pertidaksamaan Logaritma

Penyelesaian persamaan dan pertidaksamaan logaritma merupakan materi pelajaran yang diajarkan di SMA. Berkaitan dengan logaritma, pembelajaran ini dibagi menjadi dua bagian, yaitu dasar-dasar logaritma yang meliputi sifat dan operasi hitung logaritma, dan yang kedua adalah persamaan dan pertidaksamaan, serta fungsi logaritma.

Dalam kesempatan ini akan dibahas tentang persamaan dan pertidaksamaan logaritma beserta cara menyelesaikannya.

Sebelumnya, perhatikan sifat-sifat logaritma berikut.
Misalkan diketahui alog b, alog c dengan a>0, b>0, c > 0.

alog b = log b/log a

alog a = 1

alog b + blog c = alog bc

alog b - blog c = alog b/c

alog b . blog c = alog c

alog bn = n alog b

Beberapa bentuk persamaan logaritma dan penyelesaiannya sebagai berikut.

1. Bentuk alog f(x) = alog g(x)
alog f(x) = alog g(x), dengan syarat a > 0,


Maka penyelesaiannya adalah f(x) = g(x), f(x) > 0 dan g(x) > 0


g(x) boleh berupa konstanta



2. Bentuk alog f(x) = blog f(x)

alog f(x) = blog f(x), dengan syarat a, b > 0,
Maka penyelesaiannya adalah f(x)= 1



3. Bentuk h(x)log f(x) = h(x)log g(x)

h(x)log f(x) = h(X)log g(x), dengan syarat h(x) > 0,

Maka penyelesaiannya adalah f(x) = g(x), f(x) > 0, g(x) > 0, h(x) tidak sama dengan 1.

Lebih jelasnya perhatikan  beberapa contoh berikut.



Tentukan penyelesaian dari persamaan logaritma berikut
1.  5log 2x = 5log 20
2.  3log (3x + 1) = 3log 25
3.  xlog (2x + 3) = xlog (x + 9)
4.  4log (5x + 4) = 3
5.  2log (2x2 + 15) = 2log (x2 + 8x)



Jawaban:
1.  5log 2x = 5log 20
       2x = 20
         x = 10
Jadi, penyelesaiannya adalah x = 10.

2.  3log (3x + 1) = 3log 25
3x + 1 = 25
      3x = 24
        x =  8
Jadi, penyelesaiannya adalah x = 8.

3.  xlog (2x + 3) = xlog (x + 9), syaratnya x>0.
2x + 3 = x + 9
2x – x = 9 – 3
       x = 6
Jadi, penyelesaiannya adalah x = 6.

4.  4log (5x + 4) = 3
4log (5x + 4) = 4log 43
4log (5x + 4) = 4log 64
          5x + 4 = 64
                5x = 60
                  x = 12
Jadi, penyelesaiannya adalah x = 12.

5.  2log (2x2 + 15) = 2log (x2 + 8x)
2x2 + 15 = x2 + 8x
2x2 – x2 8x + 15 = 0
         x2 8x + 15 = 0
         (x – 3)(x – 5) = 0
         x = 3 atau x = 5
     Jadi, penyelesaiannya adalah x = 3 atau x = 5.

Pertidaksamaan Logaritma

Dalam menyelesaikan pertidaksamaan logaritma, langkah-langkah penyelesaiannya hampir sama dengan cara penyelesaian padapersamaan logaritma. Hanya saja lebih memperhatikan tanda ketidaksamaanya.
Untuk lebih jelasnya, perhatikan beberapa contoh berikut.



Tentukan penyelesaian dari pertidaksamaan logaritma berikut
1.  5log 3x + 5 < 5log 35
2.  3log (2x + 3) > 3log 15
3.  2log (6x + 2) < 2log (x + 27)
4.  2log (5x – 14) < 6
5.  4log (2x2 + 24) > 4log (x2 + 10x) 
6.  x+1log (2x – 3) < x+1log (x + 5)
7.  2x-5log (x2 + 5x) > 2x-5log (4x + 12)




Jawaban:
1.  5log 3x + 5 < 5log 35
Syarat nilai bilangan pada logaritma 3x + 5 > 0 atau x > -5/3 ..... (1)
3x + 5 < 35
      3x < 30
        x < 10  ....(2)
Jadi dari (1) dan (2) diperoleh penyelesaian -5/3 < x < 10.

2.  3log (2x + 3) > 3log 15
Syarat nilai bilangan pada logaritma 2x + 3 > 0 atau x > -3/2 ..... (1)
Perbandingan nilai pada logaritma
2x + 3 > 15
      2x > 12
        x > 6  ....(2)
Jadi, dari (1) dan (2) diperoleh penyelesaian x > 6.

3.  2log (6x + 2) < 2log (x + 27)
Syarat nilai bilangan pada logaritma:
6x + 2 > 0, maka x > -1/3 .... (1)
x + 27 > 0, maka x > -27 ..... (2)
Perbandingan nilai pada logaritma
6x + 2 < x + 27
 6x – x < 27 – 2
      5x < 25
        x < 5   ..... (3)
Jadi, dari (1), (2),dan (3) diperoleh penyelesaian -1/3 < x < 5

4.  2log (5x – 16) < 6
Syarat nilai bilangan pada logaritma:
5x – 16 > 0, maka x > 16/5 .... (1)
Perbandingan nilai pada logaritma
2log (5x – 16) < 2log 26
2log (5x – 16) < 2log 64
         5x – 16 <  64
                5x < 80
                  x < 16 . . . . (2)
Jadi, dari (1) dan (2) diperoleh penyelesaian 16/5 < x < 16.

5.  4log (2x2 + 24) > 4log (x2 + 10x)
Syarat nilai pada logaritma.
2x2 + 24 > 0 (definit positif). Jadi, berlaku untuk setiap x  . . . (1)
x2 + 10x > 0, maka x < -10  atau x > 0 . . . . (2)
Perbandingan nilai pada logaritma
(2x2 + 24) >  (x2 + 10x)
2x2 - x2 - 10x + 24 > 0
        x2 - 10x + 24 > 0
        (x – 4)(x – 6) >
       x < 4 atau x > 6 ....(3)

Jadi, dari (1), (2), dan (3) diperoleh penyelesaian x < -10 atau x > 6.

6.  x+1log (2x – 3) < x+1log (x + 5)
Syarat nilai pada bilangan x+1>0  
Batas ini dibagi menjadi 2,yaitu 0<x+1<1 dan x+1>1, sehingga diperoleh batas-batas berikut.

Untuk  0<x+1<1 atau -1 < x <0. . . (1)
Syarat nilai pada logaritma.
2x – 3 > 0, maka x>3/2       . . . (2)
x + 5 > 0, maka x > -5        . . . (3)
Perbandingan nilai pada logaritma
(2x – 3) >  (x + 5)
   2x - x > 5 + 3
          x >  8         ...(4)
    Dari pertidaksamaan (1), (2), (3) dam (4), tidak ada irisan penyelesaian.

 
Untuk  x+1>1 atau x > 0 . . . (1)
Syarat nilai pada logaritma.
2x – 3 > 0, maka x>3/2       . . . (2)
x + 5 > 0, maka x > -5        . . . (3)
Perbandingan nilai pada logaritma
(2x – 3) <  (x + 5)
   2x - x < 5 + 3
          x <  8         ...(4)
    Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 3/2 <x < 8.
Jadi, penyelesaiannya adalah 3/2 <x< 8.


7.  2x-5log (x2 + 5x) > 2x-5log (4x + 12)
Syarat nilai pada bilangan 2x-5 > 0  
Batas ini dibagi menjadi 2,yaitu 0<2x-5<1 dan 2x-5>1, sehingga diperoleh batas-batas berikut.

Untuk  0< 2x-5 <1 atau 5/2 < x < 3        . . . (1)
Syarat nilai pada logaritma.
x2 + 5x > 0, maka x < -5 atau x > 0       . . . (2)
4x + 12 > 0, maka x > -3                       . . . (3)
Perbandingan nilai pada logaritma
(x2 + 5x) < (4x + 12)
x2 + 5x - 4x - 12 < 0
        x2 + x - 12 < 0
    (x + 4)(x - 3) < 0 
       -4 < x < 3              . . . . . (4)
Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 5/2 < x < 3.
     
     Untuk  2x-5 > 1 atau  x > 3       . . . (1)
     Syarat nilai pada logaritma.
x2 + 5x > 0, maka x < -5 atau x > 0       . . . (2)
4x - 12 > 0, maka x > 3            . . . (3)
    
Perbandingan nilai pada logaritma
(x2 + 5x) > (4x + 12)
x2 + 5x - 4x - 12 > 0
         x2 + x - 12 > 0
(x + 4)(x - 3) > 0 
x <-4 atau  x > 3        . . . . . (4)
  
Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu x > 3.
Jika, kedua penyelesaian digabungkan maka diperoleh penyelesaian x > 5/2 dan x =/ 3.

Blogger
Disqus

No comments